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The paper presents the winner determination problem (WDP) as a constraint programming optimization problem. The 

WDP is a problem usually discussed and solved in the framework of combinatorial auctions. A combinatorial auction 

consists of finding, from a given finite set of combinatorial bids B, a feasible subset B' of B with a maximum 

revenue. The paper presents a constraint logic programming. approach to this problem. A model has been defined and 

solved using the constraint logic programming language CHIP. 
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1. INTRODUCTION 

According to Encyclopædia Britannica, auction is defined as the buying and selling of real and personal 

property through open public bidding. The traditional auction process involves a succession of increasing 

bids or offers by potential purchasers until the highest (and final) bid is accepted by the auctioneer (who 

is usually an agent of the seller). Combinatorial auctions (CA) are auctions in which bidders place bids 

on combinations of items, called ‗‗packages,‘‘ rather than just individual items. 

The field of combinatorial auction has grown rapidly in the past ten years. Auction theory is one of the 

basic topics in economics, because it asks and answers the most fundamental questions in market 

economy: who should get what and at what price?  

The rational behind combinatorial auction is due to the fact that the value of an item to a bidder may 

depend significantly on what other items the bidder does or does not acquire. This dependence is of two 

main types: complements and substitutes: 

 

 items A and B are complements if the value of A to a bidder is greater if the bidder also 

acquires B;  

 items A and B are substitutes if the bidder is interested in either A or B.  

 

The importance of combinatorial auction has resulted in a number of monographic publications, for the 

latest see e.g. Toczyłowski (2003) and Cramton-Shoham-Steinberg (2006). Perhaps the oldest kind of 

combinatorial auctions has been used in real estate trading, where individual items have been auctioned 

first and next, at the end, bids for packages of items have to be called for. If a package bid exceeded the 

sum of individual bids for the package items, then the items were sold as a package. The advantage of 
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such combinatorial bidding extension is that bidders can more fully express his preferences and the 

auctioneer can make a more profitable sale. 

Recently, a number of new applications has emerged, e.g. for electrical energy trading (Toczyłowski 

2003), for load transportation problems, for bus routes, for allocating radio spectrum for wireless 

communications services, see Cramton et al. (2006). Package bidding is necessarily a combinatorial 

decision problem, most often formulated as combinatorial optimization problem and solved using 

traditional techniques of operation research, especially techniques from combinatorial optimization and 

mathematical programming. The Author claims that Constraint Logic Programming is a particularly 

suitable tool for modeling and solving combinatorial auction problems. To the best of his knowledge, the 

present paper seems to be the first advocating this approach.  

Any item or service offered by some agent may be the target of combinatorial auction. The participants 

can bid for particular items or optionally for sets of items. After reporting the purchase bid, particular 

item or set of items, which were the substance of reporting, have to be accepted as a whole or integrally 

rejected after the auction is finished. 

The bids for such sets may differ from the sum of individual bids for their elements. The highest profit 

from the sale is the goal of the auction. The important feature is that not every item or set of items has to 

be sold after the auction finishes.  

2. PROBLEM FORMULATION 

The winner determination problem (WDP) is the problem of finding a feasible subset B' of B with a 

maximum revenue, given a finite set of combinatorial bids B.  

 

 

Fig. 1. The Winner Determination Problem 

Of course each bidder can submit one or more bids at the auction. The bids may be complementary or 

substitutive.   

 

From the WDP perspective combinatorial auctions are of different types.  

1. Single - unit combinatorial auctions (each item is unique), defined  as follows. 

The auctioneer has a set of unique items, },...,2,1{ mM  to sell, and the buyers submit a set of bids, 

},...,,{ 21 nBBBB . A bid is a tuple },{ jjj pSB , where MS j  is a set of items and 0jp   is 

the price for the set. The WDP for the single-unit combinatorial auction aims at labelling the bids as 

winning or losing so as to maximize the auctioneer's revenue under the constraint that each item can be 

allocated to at most one bidder: 
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2. Multi – unit combinatorial auctions (each item is available in many units): 

The auctioneer has a set of items, },...,2,1{ mM  to sell. The auctioneer has some number of units of 

each item available: },...,,{ 21 muuuU , iu . The buyers submit a set of bids, },...,,{ 21 nbbbB . 

A bid is a tuple 
jmjjjj paaab ,,...,, 21

, where 0jka  is the number of units of item k that the bid 

requests, and 0jp  is the price. Obviously, for a single-unit combinatorial auction the number of units 

for any item is always 1. 

The WDP for the multi-unit combinatorial auction aims at labelling the bids as winning or losing so as to 

maximize the auctioneer's revenue under the constraint that each unit of the items can be allocated to at 

most one bidder: 
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3. COMPUTATIONAL COMPLEXITY  

It is well known that the WDP become harder to solve as the number of items, units and bids increases.  

The size of the WDP is defined by the number of variables that have to be instantiated to solve the 

problem. Usually each combinatorial auction has 2 variables types, bids and items. The number of bids 

and items may be several hundreds or more. 

Almost every paper (see e.g.  Rothkopf et al. (1998), Lehmann et al.  (2006)) on combinatorial auction 

mentions that the WDP is NP-hard. That means that the computation time increases exponentially on the 

size of the problem )(n  as n . This can be simply derived from the fact that the NP-hard weighted 

set packing problem is equivalent to the WDP see Rothkopf (1998) . Moreover Lehmann, Müller and 

Sandholm (2006), have proven NP-hardness by reducing the knapsack problem to this problem. 
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4. CONSTRAINTS 

Constraint Logic Programming (CLP) is a  programming paradigm in which a properly defined model of 

problem is at the same time a program for the solution of the problem. In accordance with the CLP 

methodology, the problem must be modelled using predicates and constraints provided by the CLP 

language used and by the program designer. The WDP in combinatorial auction can be modelled by the 

constraint logic programming language CHIP v5.7.  

Constraints are the most important things in CLP. The ability to express complex constraints and precise 

description of models is crucial. CHIP does it in an efficient  and declarative way. CLP is based on the 

interplay of search and constraint propagation. This interplay includes e.g. heuristic  methods like 

Forward Checking (FC) and Looking Ahead (LA), see Barták (1999). 

 

The Winner Determination Problem has to fulfill the following constraints: 

 

 every unit of an item can be allocated to at most one bid; 

 the sum of allocated units must not be larger then the total number of those units the auctioneer 

has for selling. 

 

From those two constraints follows that bids are treated as indivisible whole i.e. they cannot be divided 

into primary elements, see Tatoń (2005). 

5. MODELING THE WDP PROBLEM IN CHIP 

Modeling and solving the winner determination problem in CHIP application is the main task because 

the proper description of problem in CLP, is the program of its solution.  The model and program that 

solves the problem has the following typical structure: 

 

 variable declaration; 

 formulation of constraints; 

 labeling procedure, 

 

discussed below. 

5.1. Variable declaration 

Every bidder submits bids including subsets of items,  number of units for every item and maximal prices 

willing to pay for bids. The first step of the procedure design is variable declaration. For CHIP programs 

the needed  variable declaration is as follow: 

 

 Predicate price() has a single list as its argument. The list contains bid values for every bidders: 

 

price([p1,p2,…,pn]). 

 

 Predicate data() has a list of lists as its argument.. The consecutive lists contain bids for 

consecutive items:  

 

data([ 

  [X1,1,X1,2,…,X1,n],  

  [X2,1,X2,2,…,X2,n],  

  […,…,…,…],  



  [Xm,1,Xm,2,…,Xm,n]  

         ]). 

 

I.e. X2,1.denotes the bid for item 2 by bidder 1. The list of lists may be looked upon as an  n×m 

matrix. The entries Xi,j of an n×m matrix are indexed by a double index. The first index 

represents the row (items) of that entry and the second index represents the column (bids) of that 

entry. 

 

 Predicate number_of_items() has a single list as its argument. The list contains numbers of 

consecutive item to be auctioned: 

 

number_of_items[U1,U2,…,Um]). 

 

For the case of a single unit combinatorial auction any  item is available for sale only in one unit, for 

example: 

 

number_of_items ([1,1,1,1,1]). 

 

For this case the matrix in predicate data() may contain only 1 or 0,  where 1 if bidder bids item and 0 if 

bidder doesn‘t bid the item: 

 

data([1,0,0,1,1], 

        [0,0,1,1,0], 

        [0,1,0,1,0], 

        [1,1,0,0,0], 

        [0,0,0,1,0]). 

 

For the case of multi-unit combinatorial auction any  item is available for sale in a number of copies e.g.:   

 

number_of_items ([5,7,3,9,4]). 

 

In this case the matrix in predicate data() may contain values from 0 to the maximal number of available 

units for consecutive items. If the number is different from 0, then the bidder would bid for the number 

of units of corresponding item. Else if the number is equal to 0, the bidder would not bid for this item: 

 

data([5,7,0,9,4], 

        [0,4,3,1,2], 

        [2,1,0,3,0], 

        [3,0,1,0,4], 

        [2,1,3,4,2]). 

 

If two or more bidders bid for the same combination of items, only the best offer is considered. The 

remaining are pruned as they would loose anyway. 

5.2. Formulation of constraints  -  first approach 

CLP makes possible the formulation of constraints in different ways. This paper presents two 

possibilities. One of them defines the constraints by simple logical statements in the program, having the 

form of  relations among several variables (k-ary constraints). For a  single unit combinatorial auction it 

may look as follow: 

 

D2+D5+D7+D8  #<=1, 
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For a  multi unit combinatorial auction it may look like this: 

 

D2*U2+D5*U2+D7*U2+D8*U2  #=MaxUnitsItems2 

 

This approach of modelling constraints in CLP results in a faster program than the second.  However this 

approach needs a larger number of variables declaration making the program less readable and increasing 

the chances to violate CHIP inherent constraints on the number of variables. For example if the number 

of items and the complexity of bids increase, the number of model variables increases as well. In CHIP 

v5.7 the maximum number of variables is defined by the ―Dictionary size‖ as equal to 262139. The 

dictionary uses a fixed size, which can not be changed by the user (this is a system limits of the number 

of variable). This limit allows only modelling auctions containing  only about 100 items and 50 units for 

every item. 

This is a serious disadvantage. Therefore attention will be concentrated in the sequel on the second 

approach 

5.3. Formulation of constraints  -  second approach 

The second approach is to build the constrains dynamically from the  input data while solving the 

problem. In this case there is no need to define the constraints in the program, but instead we have to 

define special predicates who take care of the constraints. The constraints in CHIP are build by a 

predicate build_constraints(), defined as follow: 

 
build_constraints([],Vars,[]). 

build_constraints([],_,_) :- 

sprintf(Msg, “error: Lists with different_ 

  length",[]), 

 writeln(Msg), 

 fail. 

build_constraints(_,_,[]) :- 

sprintf(Msg,"error: Lists with different_ length",[]), 

 writeln(Msg), 

 fail. 

build_constraints([Li|List],Vars,[Ui|Units]) :- 

 !, 

linear_exp_i(Li,Vars,Lin_exp), 

 Lin_exp #<= Ui, 

build_constraints(List,Vars,Units). 

 

For this case no definitions of constraints by logical statements in the program are needed,  because the 

predicate build_constraints() builds these constraints dynamically. 

Predicate build_constraints() is building constraints by another predicate linear_exp_i(),which builds 

linear expression of the following form: 

 

([A1,A2,..,An],[X1,X2,..,Xn],Lin_exp) → Lin_exp Lin_exp = A1*X1+A2*X2+..+An*Xn,  

 

where  A1,…,An are the number of prices for every bids, and X1,…,Xn are binary {0,1} decisions which are 

to be labelled. The predicate linear_exp_i() is defined as follow: 

 
linear_exp_i([],[],0). 

linear_exp_i([A|Li],[X|Vars],A*X+Lin_exp) :- 

 !, 

 linear_exp_i(Li,Vars,Lin_exp). 

 



This second approach to modeling the constraints in CHIP is universal for single and multi unit CA. The 

difference between them is only in declaration of input data.  

5.4. Labeling procedure 

The CHIP language makes the branch and bound algorithm available as part of its compiler. It may be 

used in a very convenient, declarative set-up. Complex performance indices can be defined by the  user 

and passed as a parameter to labeling. This provides maximum flexibility to the programmer while 

keeping a reasonable program size. There are many possibilities to do  labeling. One of them is to use 

standard backtracking with branch-and-bound search strategies.  

The general description of the branch-and-bound technique is well-known see e.g. Gonen (2000). Better 

approach to solve WDP is to use advanced backtracking with Forward Checking (FC) and Looking 

Ahead (LA) heuristics build in CHIP. FC removes values of not yet instantiated variables only on 

instantiated variables. FC checks only the constraints between the current variable and the future 

variables. LA arc-consistency is checked after each distribution step on all variables and inconsistent 

values are removed.  

The labeling procedure for backtracking with FC and LA built-in CHIP can be realized by standard 

predicate labeling(_,_,_,_). This predicate provides a simplified and efficient way for assigning values to 

variables. 

The min_max() predicates is a higher order predicate providing optimization methods in CHIP, searching 

among all solutions for the goal. This predicate is searching for a solution which minimizes the cost. The 

cost may also be bounded from below and above. By default, min_max() prints out solutions as they are 

found. This printing is most useful for the considered approach. 

The advantages of CLP over traditional Operation Research techniques have been highlighted many 

times, see e.g. Hansen (2003). 

 

6. CONSTRAINT LOGIC PROGRAMMING FOR THE WINNER DETERMINATION 

PROBLEM 

The main procedure is as follows:  

 
top :- 

number_of_items(Units), 

price(Price), 

data(Data), 

length(Decision,5), 

utime(_),  

Decision :: 0..1, 

X :: 0..UpperBound, 

Goal :: 0.. UpperBound, 

once(build_constraints(Data,Decision,Units)), 

once(linear_exp_i(Price,Decision,Lin_exp-)), 

once(Lin_exp #= Goal), 

X + Goal  #= UpperBound, 

min_max((labeling(Decision),_get_choice-(C)),X), 

write('Maximum:: '),writeln(Goal), 

writeln(decision-Decision). 

 

Upper Bound is a name for the domain size. The domain of a variable can be at most 0..100000. This 

is a limit of the CHIP applications. If we want to receive optimal solutions, scaling of every variable 

Price may sometimes be needed.  
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A constraint logic programming approach to the winner determination problem in CHIP is quickly 

generating answers, no matter whether the allocation of goods for bidders is feasible or not.  

7. A WDP EXAMPLE  

An example of multi-unit combinatorial auction will be presented in detail. For six examples of single 

unit combinatorial auctions only the results of applying two numerical strategies of labelling are 

presented. 

The first auction is for the sale of  different number of 5 items: 

 

Table 1. Number of items 

Items A B C D E 

Number 5 7 3 9 4 

 

5 bids were submitted from 5 bidders: 

Table 2. Bids submit on auction 

Items A B C D E Valuations 

Bidder 1 5 7 0 9 4 100 

Bidder 2 0 4 3 1 2 80 

Bidder 3 2 1 0 3 0 120 

Bidder 4 3 0 1 0 4 90 

Bidder 5 2 1 3 4 2 95 

 

The aim was to find an allocation of items to bidders that maximizes the auctioneer revenue. Variable 

declaration of this example were shown in description of modeling the WDP problem in CHIP.  

 

The solution for this WDP is: the winner is bidder 3 with bids (A-2, B-1, D-3) and at price – 120 and 

bidder 5 with bids (A-2, B-1, C-3, D-4, E-2) and at price – 95.  

 

For the next  six example we use CATS (Combinatorial Auction Test Suite) see e.g. 

Leyton Brown-Pearson-Shoham for generate input data. We generate random test auction with 

25,50,75,100,125 and 150 items for 50 bids every auction. This experimental was running on a Pantium 

IV-3,06 with 1024 MB memory RAM with MS Windows XP professional operating system. We use two 

strategies of labeling. The first of them is presented with a continuous line in the chart and represents the 

standard labeling strategy of CHIP. The second one is the dashed line in the chart and represents 

most_constrainted strategy. 

 

 

Fig. 1. Chart of solution time 



We usually do not now which of those strategy is most effective for a given problem it has to be decided 

by "trial and error". In case of most_constrained  labelling strategy the time needed to get the optimal 

solution is less then for the standard strategy (WDP problem).  

8. CONCLUSION AND FUTURE WORK 

It was demonstrated that Constraint Logic Programming as made available by CHIP is a suitable tool for 

formulating and solving a range of WDP for various combinatorial auctions. The CHIP program 

presented solves both single and multi-unit combinatorial auction WDP problem. The two methods of 

modeling of constraints for the problem were discussed and the most effective was determined. The 

origin of the solved problems was discussed. The first discussed example is simple but we must 

remember the winner determination problems are NP-hard problems. Practical size problems may be 

hard to solve because they cannot be solved in polynomial time. The program presented in the paper may 

also generate feasible solution for auctions for which the optimal solution is unobtainable because of 

large numbers of items and bids.  This is possible thanks to the fact that the CLP program displays all 

feasible solutions while searching for the optimum one. Of course, the time needed to get an optimal 

solution depends on the number of constraints. More often then not, the more numerous and complex the 

constraints are, the shorter the time needed to solve the problem. The main benefit of the CLP approach 

is the simplicity with which additional constraints can be incorporated into the problem and the fact that 

there is no need to transform the original problem statement into some canonical form. 
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